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In the framework of Lotka-Volterra dynamics with evolutionary parameter variation, it is shown that a
system of two competing species which is evolutionarily unstable, if left to themselves, is stabilized by a
common predator preying on both of them. Game-theoretic implications of the results are also discussed.
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From the dominant plants in forest vegetation to the wild
beasts in savanna, an often encountered ecological paradox
exists in the form of stabilizing influence of the top predator.
While two species in direct competition rarely form a stable
ecosystem, they often coexist under the dominance of a com-
mon predator[1]. The most illustrative example is found in
the trophic pyramids[2], where the apex predator, the most
savage aggressor of all, seems to act as the key guarantor of
the stability of the whole system[3]. For species with intel-
lectual capacity, this fact might be explained as a result of
conscious effort of enlightened self-interest. But the peace-
keeping function of the apex predator is so prevalent
throughout ecosystems that the existence of a simple and
universal dynamics should be suspected. Although there
have been numerous model proposals to understand the phe-
nomenon[4], no compelling explanation with simplicity and
transparency has appeared to this date.

The purpose of this paper is to understand the structure
and stability of ecosystems composed of competing species
in the framework of evolutionary population dynamics[5,6].
The tool we employ is the Lotka-Volterra equation with adia-
batic parameter variation[7]. In this approach, the ecological
dynamics is determined by the time variation of the variables
representing the population of the species, while the adia-
batic parameter variation represents the behavioral evolution
of the species. The viability of a species in this framework is
judged both by the short-time ecological stability of the orbit
and also by the long-term evolutionary stability of the shift-
ing parameters.

However, the description clearly is not a faithful one to
what is actually happening in nature. It is hard to imagine
that a predator species like a lion or shark feeds solely on a
single prey species. So what ever meaning we can assign to
the single species and single layer of prey idea behind the
Lotka-Volterra equation such as in Ref.[7] works at an ab-
stract level. Thus we are obliged to question how valid this
abstraction is. For example, can a prey layer population vari-
able be considered a sum of populations of many prey spe-
cies which are about equally attractive for the predator a

layer above? And should not this summed population vari-
able be independent of the competition among the prey spe-
cies? In the present work the authors try to step forward
toward answering this question.

We focus specifically on a system that consists of two
self-sustaining but directly competing species and an apex
predator who preys over both competitors. We show that the
system evolves towards an evolutionarily stable configura-
tion in which the warring preys are tamed into peaceful co-
existence. This is in contrast to the case of two competitors
left to themselves, in which there are no evolutionarily stable
solutions for coexistence and an “arms race” drives one of
the competitors into eventual extinction. We also show that
our results can be interpreted in a game-theoretic language as
the apex predator turning the prisoner’s dilemma between
two competitors into a collaborative game.

Suppose there are two populations of competing species
x1 and x2 which are preyed upon by a common predator
populationy (Fig. 1). We describe the ecological dynamics
of this system by the standard Lotka-Volterra equations

ẋ1 = b1x1 − a1x1
2 − s2x1x2 − r1x1y,

ẋ2 = b2x2 − a2x2
2 − s1x1x2 − r2x2y,

ẏ = − dy+ fr1x1y + fr2x2y. s1d

Here,b1, b2 are the reproduction rates for speciesx1, x2, and
a1, a2 are the environmental limitation factor to their growth.
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FIG. 1. A symbolic diagram showing the pecking order of the
three species system described by Eqs.(1). The arrows represent the
aggression and predation with the specified intensities.
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The coefficientd is the decay rate for the predatory, and f is
the efficiency of its predation. In the last equation, a term
proportional toy2 could be added for consistency with other
equations, but this can be shown to introduce simply a tech-
nical complication without affecting the main line of our
arguments. Also, specifying separate predation efficiencies
for x1 andx2 makes no essential difference, because the re-
sult can be turned into the original form(1) with rescaling of
variables. The parametersr1 andr2 are the aggression inten-
sities of the apex predatory towardsx1 andx2, respectively.
Similarly, s1 and s2 are the aggression intensities of
x1 to x2 and ofx2 to x1, respectively. We assume all param-
eters to be positive real numbers. At this stage, we treat all of
them as fixed numbers, making no distinction between the
Roman denominated “environmental” parameters and Greek
denominated “behavioral” parameters. A nontrivial fixed

point xistd=Xi ,ystd=Y sẊi =Ẏ=0d with i =1, 2 is given by

X1 =
1

f

dsa2r1 − s2r2d − fsb2r1 − b1r2dr2

a2r1
2 + a1r2

2 − ss1 + s2dr1r2
,

X2 =
1

f

dsa1r2 − s1r1d + fsb2r1 − b1r2dr1

a2r1
2 + a1r2

2 − ss1 + s2dr1r2
,

Y = −
d

f

a1a2 − s1s2

a2r1
2 + a1r2

2 − ss1 + s2dr1r2

+
sa2b1 − b2s2dr1 + sa1b2 − b1s1dr2

a2r1
2 + a1r2

2 − ss1 + s2dr1r2
. s2d

The stability of the fixed point is determined by the behavior
of the linearized map

M = 1− a1X1 − s2X1 − r1X1

− s1X2 − a2X2 − r2X2

fr1Y fr2Y 0
2 . s3d

Namely, the fixed point is stable when real part of all the
eigenvaluesl of M determined by

ulI − Mu = 0 s4d

is negative.
When the fixed point is of a stable, attracting sort, neigh-

boring orbits form an absorbing spiral in phase space. We
now assume that the evolutionary pressure of selection and
adaptation are at work. We can then regard the aggression
intensitiesr1, r2, s1, and s2 as evolutionarily adjustable
parameterswhich evolve along the path that simultaneously
increase the functionsX1fs1g, X2fs2g, and Yfr1,r2g until
they reach the optimal values. There are several indirect
pieces of evidence supporting the existence of this type of
adiabatic evolution among real-life ecosystems[8,9]. It is
convenient to start with the maximization condition for the
apex predatoru]Y/]r1ur1

* =0 and u]Y/]r2ur2
* =0. We note that

this is just a technical choice, and the results are valid as long
as the time scale of the maximization ofX1fs1g andX2fs2g is
comparable to that ofYfr1,r2g. We then have the relations

r1
* =

d

f

2a1a2b1 − b1s+s1 + a1b2s−

a2b1
2 + a1b2

2 − b1b2s+
,

r2
* =

d

f

2a1a2b2 − b2s+s2 − a2b1s−

a2b1
2 + a1b2

2 − b1b2s+
. s5d

These conditions give the expressions

X1
* =

2a2b1 − b2s+

4a1a2 − s+
2 ,

X2
* =

2a1b2 − b1s+

4a1a2 − s+
2 ,

Y* =
f

d

a2b1
2 + a1b2

2 − b1b2s+

4a1a2 − s+
2 . s6d

The quantities −X1
* and −X2

* as functions ofs1 ands2 act as
the “potential surface” for the variation ofs1 ands2. In Eqs.
(5) and (6), the notations± ;s1±s2 is used. With the defi-
nitions a;Îa1a2 andb;sÎa2/a1dsb1/b2d, the valid param-
eter range forXi andY being positive and stablesRel,0d is
given by

s1 + s2 , minhab,a/bj. s7d

That the stability requirement is satisfied can be checked by
the fact that all coefficients of the third-order polynomial
equation(4) are of same sign within this parameter range.

The evolution ofs1 ands2 depends on their starting val-
ues. With a straightforward calculation, we obtain

]X1
*

]s1
, 0,

]X2
*

]s2
, 0:s1 + s2 , scr,

]X1
*

]s1

]X2
*

]s2
, 0:s1 + s2 . scr, s8d

within the range of Eq.(7). The critical aggression intensity
scr is given by

scr ; maxhab/2,a/2bj. s9d

If the sums1+s2 is below scr, both s1 and s2 will move
toward s1=s2=0. Namely, two competing species shall
settle for a peaceful coexistence as the common preys of a
predatory. On the other hand, if the sum starts above a
critical value,s1 ands2 will increase until one of the com-
peting species is extinct at that critical value. The situation
becomes immediately clear with a glance at numerical ex-
ample depicted in Figs. 2 and 3.

A crucial point is that the mastery acts as a punisher,
according to Eqs.(5), which inhibits the increase ofs1 and
s2. Figure 4 serves as a graphical illustration of this effect.
Increasingsi will induce an increase ofri, which incurs
damage uponxi. We stress that no special mechanism is as-
sumed fory to police the system at the outset, yet the dy-
namics seems to explain our common sense observation
about apex predators.

An intriguing fact is that the critical valuescr is inversely
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proportional to the natural population of one of the prey
species,b1/a1 or b2/a2. This means that coexistence of com-
peting species under common predator becomes a less like-
lier outcome for a system with richer resources. This seems
to give a partial explanation to the experimentally observed
decrease of species at the base levels of trophic pyramids[8].

We next consider the case where the predator leaves the
scene—namely,y=0 (Fig. 5). By settingr1=r2=0, we ob-
tain, in place of Eq.(6),

X1
* =

a2b1 − s2b2

a1a2 − s1s2
,

X2
* =

a1b2 − s1b1

a1a2 − s1s2
. s10d

The linearized map now takes a two-by-two matrix form

M = S− a1X1 − s2X1

− s1X2 − a2X2
D , s11d

in place of Eq.(3). A straightforward calculation gives the
condition forX1

* andX2
* to be a viable fixed point—namely,

X1
* , X2

* .0, Rel,0—in terms of the allowed region for the
aggression intensity as

s1 , a/b, s2 , ab. s12d

However, in this region, it is easy to check the relation

]X1
*

]s1
. 0,

]X2
*

]s2
. 0. s13d

Therefore, in this case, boths1 or s2 shall eventually be
increased beyond the range(12), and there is no evolution-
arily stable coexisting solutions for two competing species.
Namely, in the absence of a common master, depending on
their initial populations, one of the competing species is al-
ways driven to extinction by the arms race of increasings1
ands2 (Fig. 6).

In order to fully understand the generic shape of the eco-
system, we would have to generalize our arguments to more
trophic levels than two and also more species than two
within a single trophic level. For example, two species might
be in indirect competition through predation on a common
prey. More involved and sophisticated approaches may have
to be called for[8,10,11]. In the current work, no precise
specification for the evolutionary dynamics of behavioral pa-
rameters has been required. While we stress that this is an
advantage, construction and analysis of more detailed mod-
els with such specifications are attractive possibilities.

Finally, some remarks in the broader context of game
theory [12] are in order. There is an obvious game-theoretic
interpretation of the results(6) and (10). For the sake of
simplicity, let us seta1=a2=a andb1=b2=b. We now regard

FIG. 2. Fixed-point coordinatesX1
* and X2

* as functions ofs1

+s2. The parameters area1=1, b1=1, a2=1.2, b2=0.9, andd=2.
The solid line representsX1

* and the dashed lineX2
* . The fixed point

is stable in the region belowa /b but unstable aboveab. The region
in between is unphysical.

FIG. 3. Fixed-point coordinatesX1
* and X2

* as functions ofs1

ands2. The parameters area1=1, b1=1, a2=1.2,b2=0.9,d=2, and
f =0.7. In the regions1+s2,scr=ab /2=a2b1/b2, boths1 ands2

have to be decreased to makeX1 andX2 larger.

FIG. 4. Aggression intensitiesr1
* andr2

* as functions ofs1 and
s2. The parameters are the same as in Fig. 3.

FIG. 5. A symbolic diagram showing the two competing species
described by Eqs.(1) with r1=r2=0.
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si si =1,2d as the control parameter of the strategy of popu-
lation xi for the game played betweenx1 andx2 whose payoff
tables are given byX1

*fs1,s2g and X2
*fs1,s2g. To facilitate

the understanding, the game tables for two discretized points
for s1 ands2 are tabulated in Table I. For the case without
the common predator, Eqs.(10), the game is a continuous
strategy version of prisoner’s dilemma[13,14], whose out-
come iss1→a, s2→a, which leads to the extinction of ei-
ther x1 or x2. With the introduction of the apex predator, the

game table is turned into one of collaborative game, whose
outcome is the coexistences1→0 ands2→0. Note that the
game table is symmetrized under the presence of the apex
predator: X2

*fs1,s2g=X1
*fs2,s1g. This could be interpreted

as the sign of altruistic behavior[15]. The advantage of hav-
ing the apex predator as a “law enforcer” is evident, and the
loss of half of the populations to the predation would be an
acceptable tradeoff.

Application of Lotka-Volterra equations(1) is not limited
to the ecological population dynamics. Indeed, with the help
of replicator dynamics[6], a game-theoretic interpretation
Eqs. (1) itself is possible in terms of mixed strategy in a
generalized prisoner’s dilemma[15]. As such, the current
analysis of the stabilizing effect of the apex predator should
have direct pertinence to the problem in social and economic
settings.

In summary, we have established, for Lotka-Volterra sys-
tems with evolutionary parameter variation, that two compet-
ing species are evolutionarily unstable, but can be stabilized
by the introduction of an apex predator. We hope this to be a
start for a systematic understanding of stable ecosystems.
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TABLE I. The game tableX1
!fs1,s2g for x1 discretized ats1,

s2=a/3 (“dove”), and 2a/3 (“hawk”). The left-hand side is the
table for the case with apex predator(6) and the right-hand side,
without apex predator(10). The game tableX2

!fs1,s2g for x2 is
obtained by transposition of raw and column. The Nash equilibrium
is indicated with boldface.

With Apex predator No Apex predator

s1\s2

a/3
dove

2a/3
hawk s1\s2

a/3
dove

2a/3
hawk

a/3
dove

3b/8a 3b/9a a/3
dove

6b/8a 6b/14a

2a/3
hawk

3b/9a 3b/10a 2a/3
hawk

6b/7a 6b/10a

FIG. 6. Fixed-point coordinatesX1
* andX2

* for the case without
the apex predator as functions ofs1 ands2. X1

* will increases1 and
X2

* will increases2 to achieve local advantage, which will eventu-
ally doom X2

* to extinction. The parameters area1=1, b1=1, a2

=1.2, andb2=0.9.
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